
Proc. of International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2024)
1-2 February 2024, Victoria-Seychelles

Error Compensation of Inkjet-printed Electronics
using Incremental Learning and Knowledge

Distillation
1st Abdalla Shahin

Machine Vision
Profactor GMBH

Steyr, Austria
abdalla.shahin@profactor.at

Abstract—The paper targets the development of an error
compensation step inline a fabrication process of inkjet-printed
electronics. In the process, a microchip is placed in a circuit board
cavity pre-filled with adhesive material which is cured afterwards.
This pick and place process is very precise, yet difficult due
to the miniaturization of the chip and the board. The paper
targets the development of a robust algorithm that can detect
a typical defect that results from the process and calculate the
corrective data. The main challenge is that inspection data are
generated in batches over time based on resources availability
and process development which make each batch of data unique.
Therefore, an incremental learning methodology is sought so that
the algorithm can be trained on streams of data during process
development and provide feedback for defect repair.

Index Terms—Defect detection, Error compensation, Incre-
mental learning, Inkjet printing, Inline inspection.

I. INTRODUCTION

The TINKER project targets the development of a new
reliable, functional, and resource efficient pathway for fab-
rication of sensor packages used in autonomous driving, most
importantly radio detection and ranging (RADAR) and laser
imaging, detection, and ranging (LIDAR) sensors. The public
awareness and the industrial need for further miniaturization
of such sensor packages are the main driver of ongoing efforts
in the automotive sector to integrate such devices into the car
body instead of attaching them (e.g. on top of the car in case of
LIDAR device) [1], [2]. The paper is targeting the integration
of the RADAR micro chip, so called bare-die, inside a printed
circuit board (PCB) cavity filled initially with nonconductive
adhesive. Due to the nonuniform spreading of the adhesive,
there exist some places in the gap between the bare die and the
cavity boundaries where adhesive is missing and needs to be
compensated for to reach a flat surface. With that in mind, the
aim within TINKER is to enable error compensation inline the
respective fabrication step using machine learning algorithms

This paper is supported partially by funding from the European Union’s
Horizon 2020 research and innovation program under the Grant Agreement
n°958472, project TINKER. It is also partially supported by the government
of Upper Austria under grant Zer0P.

trained via data generated by the inline inspection system
[3]. The main target of such machine learning algorithms
is high accuracy since the fabrication is done in a micro
level. Additionally, robustness is required, which means that by
utilizing incremental learning (IL), the algorithms converge to
the same optimal or at least sub-optimal solution as achieved
by offline trained algorithms. In this paper, two deep learn-
ing models are developed: semantic segmentation model for
detecting the gap, and monocular depth estimation (MDE)
model to estimate the missing adhesive volume. The paper
is structured as follows: in Section II, previous related work
will be discussed. The methods of the previous work reflect
back to the methodology of this paper which will be discussed
in Section III. In Section IV, the models’ training and testing
results are presented and discussed. Finally, conclusions and
possible future improvements are presented in Section V.

II. RELATED WORK

A. Semantic Segmentation Overview

Semantic segmentation is defined as the pixel-wise labelling
in which each pixel is assigned to a certain class; unlike
classification, for instance, which assigns the whole image to
one class [4]. The segmentation models based on convolutional
neural network (CNN) have proven to achieve outstanding
performances [5], and therefore the paper investigates them
in particular. One of the very popular architectures are the
fully convolutional network (FCN) in [6], the DeConvNet in
[7] and the SegNet in [8]. Moreover, the U-net received wide
popularity as it manages to preserve and propagate the spatial
information of the input image to the final predicted mask
using direct connections between the encoder and decoder
blocks [9]. The U-net structure is shown in Fig. 1.

B. Monocular Depth Estimation Overview

In supervised MDE, depth information is estimated based
on a single monocular image and the corresponding ground
truth (GT) depth map. The problem is regarded as a regression
task in which the estimator learns to predict the pixel-wise

979-8-3503-9452-8/24/$31.00 © 2024 IEEE

Fig. 1. U-net architecture. [9]

depth value minimizing the error between predicted and GT
value utilizing CNN-based models [10], [11]. A significant im-
provement to the MDE task was based on an encoder-decoder
structure which has shown a high performance in extracting
the spatial features of images [12]–[14]. Some scholars use
blocks from well-known architectures as encoder backbone to
improve image feature extraction such as ResNet-50 [15]. Lee
et al. proposed an encoder-decoder approach which uses novel
local planar guidance layers which explicitly map the image
features to the desired depth predictions [16]. This approach
produced quite outstanding results and is considered as the
current state-of-the-art.

C. Incremental Learning Overview

Many approaches have discussed IL in the recent years, but
comparing these approaches is difficult due to the variety of
frameworks. However, they can be concluded in three main
types: task-IL, domain-IL, and class-IL [17]. The Domain-
IL can be described as incrementally learning the same kind
of problem but with different contexts and conditions, such
as recognizing objects under different lighting conditions or
estimating depth in both indoor and outdoor scenes. Some
IL implementations depend on the transfer of knowledge
or weights between different tasks as done by [18], [19].
Other approaches focus more on formulating a special training
loss function consisting of different parameters to direct the
training process based on these parameters [20]–[22]. The
paper is targeting the domain-IL, since the segmentation and
depth estimation outputs are always the same; however, the
recording conditions and contexts of data used for both models
are changing.

III. METHODOLOGY

A. Data & Resources Description

Throughout the TINKER project, different datasets have
been collected in a sequential manner due to process devel-
opment and limited material supply. There is a total of five
datasets as shown in Fig. 2, two of which are of the same
PCBs but with different inspection setup. Each dataset includes

Fig. 2. A sample image from each dataset in the order of usage

high resolution monochrome images of the bare-die in cavity;
whereas 3D surface scans are available for only three datasets.
GT annotations for gap segmentation are generated using
GIMP software. All images and GT annotations are cropped
to the nearest size divisible by 256 and then divided into
nonoverlapping patches of size 256x256 to have more training
data. In the end, the number of image pairs in each dataset was
450, 1920, 1920, 72, and 16128 following the same order in
Fig. 2. Since the monochrome images have higher resolution
than the 3D scans, they are downsized to the size of the
3D scans. The total number of samples used for the MDE
model was 288 image pairs. Moreover, data augmentation
functions, especially horizontal and vertical flipping, are used
to improve generalization and avoid overfitting. The overall
training time of the models was around 4 hours using a
NIVIDIA 1050 Ti GPU with 12GB memory. The training of
the gap segmentation is a bit more complex than that of the
MDE model due to the higher number of incremental steps.
Therefore, it takes around 2.5 hours based on 75 epochs and
300 training samples for base model training, and 30 epochs
and around 100 training samples for each incremental step.
All the DL models were coded using python programming
language and trained using the TensorFlow framework.

B. Gap Detection

The U-net architecture is chosen for this implementation
due to its high performance especially when the training
data are few. An ablation study was made to test different
backbone networks in terms of number of training parameters,
convergence time, and fitting accuracy. The tested networks
were VGG-16, ResNet-34, and Ineception-V2 as shown in
table I. ResNet-34 is chosen as backbone network due to
good and fast convergence as well as less training time due
to relatively small amount of training parameters. The U-net,
already assembled with the ResNet-34 backbone network, is
imported from keras built-in models, and trained with the
processed and augmented data. Fig. 3 shows a training sample
after processing. The imagenet pre-trained weights were used
for initializing the encoder weights to improve the learning
process and speed up convergence. The model was trained
for 75 epochs utilizing Adam optimizer [23] and a constant

TABLE I
PERFORMANCE COMPARISON BETWEEN VGG-16, RESNET-34, AND

INCEPTION-V2 BACKBONE NETWORKS.

Network Training parameters Training time Precision Recall Mean IoU
VGG-16 24M 16.23 mins 97.60% 98.03% 95.73%

ResNet-34 24M 10.06 mins 97.15% 98.79% 96.02%
Ineception-V2 30M 13.63 mins 97.91% 98.66% 96.63%

Fig. 3. A sample training tuble for the gap segmentation model

learning rate of 1×10−4. Since our segmentation task is binary,
the training loss function consists of a binary cross entropy
(BCE) loss and Jaccard loss, which is commonly referred to
as IoU loss function [24]. The BCE loss is used because it
employs the log probability of the predicted values and hence
penalizes those probabilities based on the distance from the
true values. The combined training loss function is shown in
(1).

L0 = − 1
N

∑N
i=1 Yi × log(M(xi)) + (1− Yi)× log(1−M(xi))

−1 + |Yi

⋂
M(xi)|

|Yi
⋃

M(xi)| ,

(1)
where Yi is the GT, xi is the data input, and M(xi) is the
model prediction, for N data samples.

C. Depth Estimation

Since the gap mask has been extracted from the gap
detection model, all substrate images and 3D scans are masked
to get only the gap contour as shown in Fig. 4. For estimating
the missing adhesive in the gap, the same gap detection U-net
model is used while freezing the encoder layers and re-training
the decoder layers. This way, the MDE model can directly
utilize the model’s encoder, which was trained to extract the
features and the spatial information of monochrome images.
The training loss function is a combination of three functions,
as was done in [25]. Due to the complexity of the MDE task
of this paper since a monochrome image is the only input,
a loss function that takes in account all details and features
of an image such as edges, pixel gradients, and luminance is
needed. Moreover, the combined loss function was preferred

Fig. 4. A data sample used for training the MDE model where the gap is
masked in both input and output data

based on its empirical results. The combined loss function is
presented in (2).

Combined = α1LSSIM (z, ẑ) + α2LMAE(z, ẑ) + α3Lreg(z, ẑ),
(2)

where ẑi is the predicted value and zi is the GT value. LSSIM

is the structural similarity index which computes similarity
between images on the basis of luminance, contrast, and
structure (3); and LMAE(z, ẑ) is the mean absolute error
for pixel-wise comparison (4). Moreover, Lreg is the Depth
Smoothness loss which compares the two depth maps based
on their gradients in x and y directions as in (5). Inspired from
[26], the total Lreg loss is the mean of the gradients’ sum over
N pixels as shown in (6). α1, α2, and α3 are weighting factor
set empirically to 0.85, 0.1 and 0.9, respectively. After training
for 100 epochs and using Adam optimizer with a constant
learning rate equal to 1×10−4, the model produced very good
performance as will be shown in Section IV.

LSSIM (z, ẑ) =
1

2
(1− (2µẑµz + c1)(2σẑz + c2)

(µ2
ẑ + µ2

z + c1)(σ2
ẑ + σ2

z + c2)
), (3)

where µẑ is the mean of ẑ, σẑ is the standard deviation of ẑ,
µz is the mean of z, σz is the standard deviation of z, σẑz is
the covariance of ẑ, and c1=0.012 and c2=0.032.

LMAE(z, ẑ) =
1

N

N∑
i

|zi − ẑi| (4)

Sx = ▽x ẑi × e
1
N

∑N
i |▽x zi|

Sy = ▽y ẑi × e
1
N

∑N
i |▽y zi|

(5)

Lreg(z, ẑ) =
1

N

N∑
i

|Sx|+ |Sy| (6)

D. Incremental Learning

The gap detection model has to be trained on all datasets to
be able to fit them all. Moreover, because 3D scans of three
datasets are available, IL can be applied to the MDE model as
well. Both models are trained once using one initial dataset,
and then the remaining datasets are fed incrementally to them.
The methodology of this paper is inspired from [21], [22]
in which the authors apply incremental learning to a multi-
class segmentation task. In this paper, the method is applied
to both segmentation and MDE models, since it is applicable
to any deep network architecture and it has shown promising
results. The training scheme of the method is shown in Fig. 5,
where a base pre-trained model undergoes k incremental steps
corresponding to k new datasets. In each step, a new model,
with the same structure and weights as the base model, is cre-
ated and complemented with a knowledge distillation feature
which prevents catastrophic forgetting. Knowledge distillation
is achieved through the proper choosing of the training loss
function which highly affects the learning process of the model
by penalizing the model weights and directing the model to
learn without forgetting. The main loss function is shown in
(7).

Ltotal = L0 + λDLD, (7)

where L0 is the initial loss function used for fitting the new
data, λD represents the distillation factor which is a hyper-
parameter, and LD ∈

{
L

′

D, L
′′

D, L
′′′

D

}
is a distillation loss

for retaining the past information. For gap segmentation task,
Lseg0 is the same as in (1). The first distillation loss function
L

′

segD is applied to the outputs of the two models in order to
compare both of them and apply required penalty to keep the
new model from being biased to the new dataset. Therefore,
the loss function in (1) is used as well; however, the GT values
are replaced by the old model’s predictions. L

′′

segD is applied
to the intermediate feature space, which is the output of both
encoders. Since the last layer of the encoder is not producing
a classification output but rather a feature space, another loss
function is needed that should keep the two feature spaces
as close as possible such as the standard L2 loss function.
Denoting the encoder of the model as E, the second distillation
loss function can be written as in (8).

L
′′

segD =
1

N

N∑
i=1

∥Ek−1(xi)− Ek(xi)∥22 (8)

Finally, L
′′′

segD is applied to the output of the last three decoder
layers; the number of layers is also a hyper-parameter. The
third distillation loss function is used since the output of the
decoder layers of each model should be kept close as well.
The L2 loss function is used and can be re-written as in (9).

L
′′′

segD =
1

N

N∑
i=1

3∑
l=1

∥∥dlk−1(xi)− dlk(xi)
∥∥2
2

3
(9)

In addition, another distillation feature can be added which
is keeping the encoder of the new model frozen (EF) while
fitting the new data through the decoder weights only. This
aims at preserving the feature extraction capabilities of the
encoder. That being said, more than one distillation function
can be combined in the same incremental step if needed. The
same incremental procedure is applied to the MDE model
because it uses the same network architecture; however, the
loss functions are different since this is a regression task. For
both the initial loss function LMDE0 and the first distillation
loss function L

′

MDED
, the combined loss in (2) is used. For

the second and third distillation loss functions, L
′′

MDED
and

Fig. 5. Knowledge distillation scheme of the IL method at k-th incremental
step. [21]

L
′′′

MDED
, berHu is used (10) since it combines both L1 and

L2 loss functions and has the advantages of both functions.

berHu =

{
|∆y| |∆y| ≤ c

∆y2+c2

2c |∆y| > c
,

c = 1
5maxi(|Mk−1(xi)−Mk(xi)|),

(10)

where xi are the input images, Mk−1(xi) are the model’s
predictions at step k − 1, Mk(xi) are the model’s predictions
at step k, and ∆y is the computed error between them.

IV. EXPERIMENTAL RESULTS

A. Reference KPIs

In TINKER, there are targeted KPIs which are defined
so as to properly assess the quality and robustness of the
developed models. Moreover, the targeted KPIs aim for beyond
state of the art [27], [28]. For both gap segmentation and
depth estimation, the targeted KPIs focus on the deviation
of the models’ predictions with respect to the true labels.
The targeted deviation was set to a maximum of 10% of
the true label. For gap segmentation, the IoU metric is used
which already computes the percentage of true predictions
with respect to the union of true and predicted entities. Simply
the deviation is interpreted as 1 - IoU, and so the KPI for
gap segmentation is achieving a minimum mean IoU of 90%.
For depth estimation, the deviation of the predicted depth
values was set to 10% of the true depth values as well. This
describes the definition of the absolute relative error, which is a
traditional evaluation metric used for MDE models. Therefore,
the target absolute relative error value of the MDE models is
0.1.

B. Gap Detection with Incremental Learning

After training the base model on the initial dataset, the other
datasets are fed incrementally to that model. The five datasets
will be referred to as the following Dn where n ∈ {0, 4}.
Each dataset is divided into two parts: training Dn

tr and testing
Dn

ts with percentages of 80% and 20%, respectively; whereas
one third of the training part are used for cross validation.
In this section, the results of the incremental training steps
are presented and discussed. Moreover, they are compared
with results obtained from standard offline-trained models with
samples from current and previous datasets at once.

In the first incremental step, the model structure inherits that
of the base model which was trained using the old dataset
(D0

tr). The model is retrained on (D1
tr) utilizing different

distillation functions. With combining both L
′

D and L
′′

D and
setting the value of λD to 1.0, the model performs well on
the two datasets achieving almost the same scores as the
offline-trained model M0(D

{0,1}
tr). This is because increasing

the value of λD leads to higher distillation loss value and
thus, gives the model a stronger bias towards maintaining
performance on past data. In the second incremental step, the
incremental model M1 is retrained with dataset (D2

tr) which
shows the substrate before curing the adhesive; moreover, it
has different lighting conditions compared to (D1

tr). Using
both distillation loss functions L

′

D and L
′′

D is considered to

Fig. 6. Qualitative results of the final incremental segmentation model M3

on testing samples from all the four datasets D0
ts (a), D1

ts (b), D2
ts (c), and

D3
ts (d).

achieve the best performance. Similarly, in the last incremental
step, the model is trained with dataset (D3

ts). Freezing the
encoder and applying only the distillation loss function L

′

D

allows the model to overcome catastrophic forgetting. In table
II, scores of the best incremental models are shown. The
incremental models achieve slightly lower evaluation scores
than the offline-trained models, which was expected. However,
from the qualitative results in Fig. 6, the deviations between
incremental models’ predictions and offline-trained models’
predictions are minor. Moreover, the offline-trained models
have higher computational cost and training time since they
need more data samples and more epochs to fit all data.
Furthermore, the fact that incremental models achieve such
performances without accessing the previous datasets gives
them more credibility. The

C. Monocular Depth Estimation with Incremental Learning

In this section, the performance of the MDE model is
presented and evaluated in terms of the popular evaluation
criteria used in literature. Table III shows the scores of the
base MDE model on testing data from datasets D1 and D4

in the first two rows. Fig. 7 shows samples from the MDE
model’s predictions on the D1

ts data and D4
ts data. From the

figure, it is clear that the trained MDE model can perform well
regardless of the location of higher depth values due to the
random flip augmentation function that was applied. With the
large dataset D4, the model is able to capture more information
due to the big amount of training samples and the diversity of
depth distributions along the gap.

Fig. 7. Qualitative results of the best MDE model on samples from the D1
ts

dataset and the large dataset D4
ts.

The MDE model is trained incrementally one time with
the D3

tr dataset. The 2D images of both datasets, D1 and
D3, are describing the same PCB substrates but are different
in terms of the recording setup, and consequently they have
different resolution and different features. However, the GT
depth measurements of both datasets are actually the same.
The training was concluded in 45 epochs with a learning rate
of 5× 10−6 which decays linearly with a factor of 0.5 every
15 epochs. In a first attempt, the loss functions, L

′

MDED
in (2)

and L
′′

MDED
in (10), are combined while training the whole

model. In a second attempt, the encoder of the new model
is frozen and only the first distillation loss function L

′

MDED

is used. Consequently, the training was much faster since the
encoder parameters are not trainable. That is why the model
utilizing L

′

D and EF is preferred since both attempts produce
quite similar performances. The last four rows of table III show
the performance of the MDE model after incremental training.
Fig. 8 shows the qualitative performance of the incremental
MDE model. Compared to the performance of the base model,
the performance of the incremental model is very promising
since it did not degrade much; the only noticeable degradation
is in the accuracy measure δ < 1.25. From table III, it is
observed that the value of the accuracy measure δ < 1.25 of
the first model in the first row is relatively low when compared
to the other accuracy measures. This is due to the low amount
of data samples. On the other hand, when a larger dataset was
provided, the model achieved relatively higher accuracy values
as reported in the second row.

V. CONCLUSIONS

To sum up, the work in this paper was done as part of
the EU project TINKER. The paper targets one fabrication
process of the project which is the placement of a microchip
inside a PCB cavity filled with nonconductive adhesive. The
developed system in this paper uses images of the bare-dies
in cavities as well as their 3D surface scans for training,
and provides an estimation of the missing adhesive in the
gap between the chip and the boundaries of the cavity. For

TABLE II
PERFORMANCE MEASURES OF THE SEGMENTATION MODEL ON PREVIOUS DATASETS AFTER EACH OF THE THREE INCREMENTAL STEPS WITH DIFFERENT

DISTILLATION CRITERIA.

base dataset(D0
ts) 1st new dataset(D1

ts) 2nd new dataset(D2
ts) 3nd new dataset(D3

ts)
Model precision recall MIoU precision recall MIoU precision recall MIoU precision recall MIoU

M0(D
{0}
tr) 97.15% 98.79% 96.02% - - - - - - - - -

M1(L
′
D, L

′′
D) 90.26% 96.68% 87.64% 92.74% 94.74% 88.20% - - - - - -

M0(D
{0,1}
tr) 96.77% 94.52% 91.68% 96.93% 96.39% 93.54% - - - - - -

M2(L
′
D, L

′′
D) 93.48% 94.87% 89.07% 94.62% 97.11% 91.80% 96.48% 92.27% 90.10% - - -

M0(D
{0,2}
tr) 89.87% 96.81% 87.47% 95.55% 96.79% 92.25% 97.70% 94.51% 93.34% - - -

M3(L
′
D, EF) 90.01% 96.45% 87.20% 92.47% 94.66% 87.89% 94.77% 95.49% 90.72% 92.87% 87.26% 81.99%

M0(D
{0,3}
tr) 96.02% 92.50% 89.11% 97.19% 96.60% 93.68% 98.63% 94.33% 93.06% 96.34% 92.87% 89.84%

TABLE III
PERFORMANCE QUALITY OF THE BASE MDE MODEL AND INCREMENTAL

MDE MODEL.

Lower is better Higher is better
Method Abs Rel RMSE log10 δ < 1.25 δ < 1.252 δ < 1.253

Unet(D1
ts) 0.192 0.040 0.082 70.0% 92.0% 97.5%

Unet(D4
ts) 0.183 0.016 0.084 85.6% 92.3% 95.5%

L
′
D, L

′′
D(D1

ts) 0.212 0.043 0.094 63.7% 89.6% 96.6%
L

′
D, L

′′
D (D3

ts) 0.236 0.055 0.103 57.6% 86.2% 96.0%
L

′
D, EF (D1

ts) 0.222 0.045 0.097 61.4% 88.9% 96.5%
L

′
D, EF (D3

ts) 0.234 0.056 0.102 58.7% 86.2% 96.1%

Fig. 8. Qualitative results of the incremental MDE model on samples from
D1

ts and D3
ts datasets.

missing adhesive estimation, two models were developed; first,
a segmentation model to detect the gap shape and location;
second, a MDE model. Moreover, The paper investigates
an incremental learning scheme to overcome the need for
generating huge amounts of data at once and allow the
model to fit newly generated data without catastrophically
forgetting past data. The key features of applying incremental
learning are the following: learning with forgetting, never
accessing the past datasets, and avoiding model expansion. The
incrementally trained gap segmentation model achieved great
performances over all datasets. Moreover, the performance of
the incrementally trained MDE model was promising as well
but can be improved with more data. That is why it can be said
that the small amount of 3D scans is one of the limitations
of this work. Applying a second incremental training step

using the dataset D4 was not convenient due to the huge
data unbalance. For future improvements, a more robust depth
metrology providing scale information, for instance, would be
much helpful. Further incremental learning criteria could be
also added to improve the ability of the models to retain the
past knowledge.

ACKNOWLEDGMENT

I would like to thank Prof. Andrea Tonello, professor at
university of Klagenfurt and Dr. Christian Eitzinger, machine
vision team leader at PROFACTOR GmbH for their technical
support throughout this work. The datasets used in this paper
are generated by the metrology systems after pick and place
process at BESI GmbH, to whom I would like to extend
my gratitude. Moreover, all appreciation goes to Infineon
Technologies AG, the bare-dies manufacturer, and to ROBERT
BOSCH GmbH, the PCBs provider. The work reported in this
paper was carried out in the premises of Profactor GmbH
where I had the opportunity to access all needed resources.

REFERENCES

[1] J. K. Baruah, A. Kumar, R. Bera, and S. Dhar, “Autonomous vehicle—a
miniaturized prototype development,” in Advances in Communication,
Devices and Networking, pp. 317–324, Springer Singapore, 2019.

[2] P. Wang, “Research on comparison of lidar and camera in autonomous
driving,” Journal of Physics: Conference Series, vol. 2093, p. 012032,
nov 2021.

[3] D. Gauder, J. Gölz, N. Jung, and G. Lanza, “Development of an adaptive
quality control loop in micro-production using machine learning, analyt-
ical gear simulation, and inline focus variation metrology for zero defect
manufacturing,” Computers in Industry, vol. 144, p. 103799, 2023.

[4] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, “Image segmentation using deep learning: A survey,”
2020.

[5] I. Ulku and E. Akagündüz, “A survey on deep learning-based archi-
tectures for semantic segmentation on 2d images,” Applied Artificial
Intelligence, vol. 36, no. 1, p. 2032924, 2022.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” 2014.

[7] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” 2015.

[8] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation,” 2015.

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” 2015.

[10] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a sin-
gle image using a multi-scale deep network,” CoRR, vol. abs/1406.2283,
2014.

[11] B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He, “Depth and
surface normal estimation from monocular images using regression
on deep features and hierarchical crfs,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1119–1127,
2015.

[12] Y. Ming, X. Meng, C. Fan, and H. Yu, “Deep learning for monocular
depth estimation: A review,” Neurocomputing, vol. 438, pp. 14–33, 2021.

[13] G. Zhang, Y. Liu, and X. Jin, “A survey of autoencoder-based rec-
ommender systems,” Frontiers of Computer Science, vol. 14, no. 2,
p. 430–450, 2019.

[14] Z. Chen, V. Badrinarayanan, G. Drozdov, and A. Rabinovich, “Estimat-
ing depth from RGB and sparse sensing,” in Computer Vision – ECCV
2018, pp. 176–192, Springer International Publishing, 2018.

[15] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
2016.

[16] J. H. Lee, M.-K. Han, D. W. Ko, and I. H. Suh, “From big to small:
Multi-scale local planar guidance for monocular depth estimation,” 2019.

[17] G. M. van de Ven, T. Tuytelaars, and A. S. Tolias, “Three types
of incremental learning,” Nature Machine Intelligence, vol. 4, no. 12,
p. 1185–1197, 2022.

[18] M. Andrade, E. Gasca, and E. R. Lara, “Implementation of incremental
learning in artificial neural networks,” in GCAI, 2017.

[19] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for contin-
uum learning,” CoRR, vol. abs/1706.08840, 2017.

[20] H. Tercan, P. Deibert, and T. Meisen, “Continual learning of neural
networks for quality prediction in production using memory aware
synapses and weight transfer,” Journal of Intelligent Manufacturing,
vol. 33, no. 1, p. 283–292, 2021.

[21] U. Michieli and P. Zanuttigh, “Incremental learning techniques for
semantic segmentation,” CoRR, vol. abs/1907.13372, 2019.

[22] U. Michieli and P. Zanuttigh, “Knowledge distillation for incremental
learning in semantic segmentation,” CoRR, vol. abs/1911.03462, 2019.

[23] A. Mustapha, L. Mohamed, and K. Ali, “Comparative study of opti-
mization techniques in deep learning: Application in the ophthalmology
field,” Journal of Physics: Conference Series, vol. 1743, p. 012002, jan
2021.

[24] D. Duque, S. Velasco-Forero, J.-E. Deschaud, F. Goulette, A. Serna,
E. Decencière, and B. Marcotegui, “On power jaccard losses for seman-
tic segmentation,” pp. 561–568, 01 2021.

[25] S. Abdulwahab, H. A. Rashwan, N. Sharaf, S. Khalid, and D. Puig,
“Deep monocular depth estimation based on content and contextual
features,” Sensors, vol. 23, no. 6, 2023.

[26] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer,” 2020.

[27] J. Spencer et al., “The monocular depth estimation challenge,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV) Workshops, pp. 623–632, January 2023.

[28] A. Masoumian, H. A. Rashwan, S. Abdulwahab, J. Cristiano, M. S. Asif,
and D. Puig, “Gcndepth: Self-supervised monocular depth estimation
based on graph convolutional network,” Neurocomputing, vol. 517,
pp. 81–92, 2023.

